skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, Xiaogang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As eusocial creatures, bees display unique macro col- lective behavior and local body dynamics that hold potential ap- plications in various fields, such as computer animation, robotics, and social behavior. Unlike birds and fish, bees fly in a low-aligned zigzag pattern. Additionally, bees rely on visual signals for foraging and predator avoidance, exhibiting distinctive local body oscilla- tions, such as body lifting, thrusting, and swaying. These inherent features pose significant challenges to realistic bee simulations in practical animation applications. In this article, we present a bio-inspired model for bee simulations capable of replicating both macro collective behavior and local body dynamics of bees. Our approach utilizes a visually-driven system to simulate a bee’s local body dynamics, incorporating obstacle perception and body rolling control for effective collision avoidance. Moreover, we develop an oscillation rule that captures the dynamics of the bee’s local bodies, drawing on insights from biological research. Our model extends beyond simulating individual bees’ dynamics; it can also represent bee swarms by integrating a fluid-based field with the bees’ in- nate noise and zigzag motions. To fine-tune our model, we utilize pre-collected honeybee flight data. Through extensive simulations and comparative experiments, we demonstrate that our model can efficiently generate realistic low-aligned and inherently noisy bee swarms. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Butterflies are not only ubiquitous around the world but are also widely known for inspiring thrill resonance, with their elegant and peculiar flights. However, realistically modeling and simulating butterfly flights—in particular, for real-time graphics and animation applications—remains an under-explored problem. In this article, we propose an efficient and practical model to simulate butterfly flights. We first model a butterfly with parametric maneuvering functions, including wing-abdomen interaction. Then, we simulate dynamic maneuvering control of the butterfly through our force-based model, which includes both the aerodynamics force and the vortex force. Through many simulation experiments and comparisons, we demonstrate that our method can efficiently simulate realistic butterfly flight motions in various real-world settings. 
    more » « less